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Abstract

Investigation of a method to extend the use of output
data from Scania’s Hardware-In-the-Loop simulations:
Development of database and search algorithm

Saman Akbarian Tari , Therése Svensson 

In the automotive industry, Hardware-In-the-Loop (HIL) laboratories are used for 
testing vehicle functions and systems. 
Swedish heavy truck manufacturer Scania recently upgraded its HIL lab resulting 
in an opportunity to save all data generated by simulations in the HIL lab 
for post analysis. Thus, Scania wished to investigate the possibility to extend 
the use of output data by examining a new test method. The new test method was 
intended to be used for disclosing a type of error that had not been possible 
to detect prior to the upgraded HIL lab. 
The proposed test method was to store tests in a database and to run the tests 
upon output data generated in the HIL lab. The tests which were to be stored 
in the database existed as scripts written in the programming language 
Python. In order to insert tests into the database the data had to be 
extracted from the Python test scripts. 
The investigation showed the database test method to be feasible in small 
scale for some test scripts but the results also indicated weaknesses with 
the method’s setup. Insertion of data, extracted from test scripts, into a 
relational database showed to be problematic as the data was highly 
heterogeneous and did not fit easily into relational tables. For future 
implementations it is suggested that the method incorporates other information 
sources complementing the test scripts. 
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Glossary   
 

Automotive simulation models (ASM) - Simulink models of vehicle dynamics, 

combustion engine, electrical components and driver assistance systems 

Coordinator system (COO) - ECU acting as a gateway between ECUs on the CAN 

network 

Controller Area Network (CAN) - Data bus system allowing communication between 

ECUs  

Electronic Control Units (ECU) - Embedded device for controlling systems and 

functions on the vehicle  

Entity attribute value (EAV) - Database design that makes it possible to avoid sparse 

tables 

Entity-relation (ER) - A technique for building a semantic data model 

Expected response – Assertions made in the test scripts comparing expected behaviour 

with actual behaviour. Each expected response consists of a set of signals 

Functional Product Characteristics (FPC) conditions - A form of a vehicular “DNA 

string” which defines a particular vehicle customisation   

Hardware-In-the-Loop (HIL) - Provides a simulated environment for testing of 

embedded computer systems  

Integration Testing - Testing the interaction between different components. Integration 

testing at RESI focuses on system level testing 

Local Interconnect Network (LIN) - Similar to the CAN network. Allowing 

communication between ECUs 

Regression Testing - Testing aimed at assuring that changes made to the system, such as 

introducing new functionality, have not introduced new faults  

Scania Electrical System Architecture for Modularization and Maintenance 

(SESAMM) - The electrical system of Scania's vehicles  

Test scripts - Scripts written in Python. Executed in Scania's HIL lab with the purpose 

of testing user functions 
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1. Introduction  
Swedish heavy truck manufacturer Scania has an advanced module system that makes it 

possible for Scania to offer its customers to combine components and functions in order 

to tailor the customers’ trucks. Scania trucks therefore exist with many different 

component configurations which poses a challenge when testing the trucks’ ability to 

work correctly without errors. At Scania testing is being performed at several levels which 

mean that each part of a system is tested both individually and as a part of the bigger 

system. When testing components at a system level the components are treated as black 

boxes1 and are assumed to work correctly internally. Components being tested at Scania 

are Electronic Control Units (ECU), devices for controlling one or more systems or 

functions of a truck. Testing at a system level, here after referred to as integration testing, 

is performed to ensure that signals are being sent correctly on the Controller Area 

Network (CAN) buses which connects ECUs (Scania document 1422538 2003; 

Sundmark, Petersen and Larsson 2011).  

To enable testing at a system level Scania has an advanced Hardware-in-the-loop (HIL) 

lab. In a HIL lab, real hardware and software components are tested in a simulated 

environment with simulated input. The HIL lab makes it possible to test functionalities 

of a truck which has not yet been manufactured and to perform tests which would be too 

perilous, too time consuming or for other reasons inappropriate to perform in an actual 

truck. Simulations in the Scania HIL lab generate a vast amount of data but analyses are 

currently performed on a very limited part. 

As only a fraction of the data generated in Scania’s HIL lab is currently utilised in the test 

process this thesis aims to investigate the possibility of extending the use of data by 

examining a new test method. Information about the current testing and the testing 

environment is presented as background in the subsequent section in order for the reader 

to obtain sufficient knowledge to understand the new test method.   

1.2 Background  
The RESI group is responsible for system and integration testing of Scania Electrical 

System Architecture for Modularization and Maintenance (SESAMM). The group 

focuses on regression testing of User function (UF) scenarios. An example of a UF is the 

Cruise Control and an example of a UF scenario is a driver using the Cruise Control when 

driving at the velocity of 90 km/h.  When adding new UFs, changes are commonly made 

in several ECUs. Thus, adding new UFs requires testing at a system level to ensure that 

the changes do not affect the whole system negatively (Sundmark and Kobetski 2013). 

1.2.1 SESAMM and Electronic Control Units  
The distributed system SESAMM2 is the electrical system in Scania’s vehicles and is used 

to control electrical functions. The system consists of ECUs which are connected by 

Controller Area Network (CAN) and Local Interconnect Network (LIN) buses. The CAN 

bus network carries messages between the ECUs. A CAN message consists of a set of 

signals. 

The ECUs are embedded systems used in vehicles to control different functions and 

systems. An example of an ECU is the Engine Control Module responsible for the engine. 

                                                           
1 Black box testing is a technique where the logic of the system under test is treated as unknown. A 
black box takes an input and produces an output, what happens inside the black box is disregard. 
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The ECUs send and receive messages via the CAN and LIN buses. Some of the ECUs 

control functions essential for the vehicle whilst others are controlling functions which 

are desirable but not required (Scania document 1422538 2003; Sundmark, Petersen and 

Larsson 2011).  

1.2.2 Hardware-in-the-loop LAB  
Hardware-In-the-Loop simulations is a technique frequently used in the automotive 

industry for testing of ECUs (Raman et al. 1999). At Scania the hardware tested is the 

ECUs and the buses connecting them. Automotive simulation models (ASM) created in 

Matlab are used to simulate the engine and vehicle dynamics. Furthermore the 

environment simulates sensors signals, i.e engine sensors, which are integrated in the lab 

providing the ECUs with data. The virtual vehicle, together with the connected hardware 

gives Scania the possibility to test different configurations without having to put them in 

an actual vehicle. A simplified illustration of the overall process is presented in figure 1. 

 

Figure 1. Hardware In the Loop Simulation  

1.2.3 Automated system and integration testing at Scania   
The goal with the automated testing is to test that signals are being sent correctly on the 

main CAN buses between the ECUs. To simulate the actions of a driver, Scania uses 

scripts written in the programming language Python. Test cases included in the test scripts 

are often simple in nature, testing specific functions of the vehicle. A test case could 

consist of pressing and releasing the brake pedal or turning the hazard activation signal 

on and off.  

Test scripts: The purpose of the test scripts is to test UF scenarios. Several UF scenarios 

are tested3 in each test script. Test scripts contain acts and each act simulates one UF 

scenario. In addition to these test acts the test scripts always contain a pre act and a post 

act. The pre act sets the simulated vehicle in a state in which it is possible to test the UF 

scenarios. The post act resets the tested components so that the tests performed in the 

script do not affect tests in subsequent test scripts. In other words the post act ensures that 

all test scripts are independent and thus can be run in the HIL lab in any order.      

                                                           
3 A simplified version of how testing with the test scripts is performed can be found in appendix A.  
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The acts can be divided into smaller parts namely into states, stimuli and expected 

responses which in turn comprises sets of signals. The pre and post acts can include states 

and stimuli while each of the other acts contains stimulus and expected response.  

 

 

Figure 2. Description of test script structure 

States, stimuli and expected responses all consist of signals. Signals can attain different 

values but when referred to as parts of a state, stimulus or expected response they are 

always associated with specific values. In the test scripts, stimuli simulate actions taken 

by a truck driver such as pressing the brake pedal, releasing the brake pedal or pressing a 

light button. To each stimulus there is an expected response which represents the vehicle’s 

reactions to the human actions. A stimulus triggers an expected response. An expected 

response when pressing the brake pedal could be that the velocity of the truck is lowered. 

Another expected response to the same stimulus could be the activation of the brake 

lights. If the truck had been turned off, pressing the brake pedal would not have been 

expected to trigger any response at all. In a test script it is the task of the states to simulate 

a state of the vehicle in which a stimulus is a valid trigger of an expected response.  

1.3 Problem description  
The HIL lab used today have recently been upgraded, with the upgrade, it is now possible 

to log all signals in a simulation. This leads to that only a fraction of the data generated 

in the lab is currently utilised in the testing process. Executing a test script in the HIL lab 

equates to controlling that a predetermined set of 10-20 signals has changed value in a 

desired way. Currently, each script executed in the HIL lab generates one separate set of 

output data. The only signals that are logged and saved in the output are those 10-20 

signals. The remaining signals are not logged having the effect that large amount of data 

goes unanalysed. To improve the test coverage, Scania wishes to investigate ways to 

utilise more data in the analysis process. The assumption is that a simulation could affect 

other signals than the ones that are foreseen to change and that are accordingly controlled. 

For example, pressing the brake pedal is not supposed to activate the hazard signal, but if 

it did it would currently go unnoticed.  

To investigate the presence of this type of errors Scania would need a new test method4. 

A proposed test method is to store information from the test scripts in a database, log all 

                                                           
4 An explanation of how the new test method extends the use of data can be found in appendix B. 
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signals for each script5 and run all tests upon each set of output data generated by test 

scripts in the HIL lab. The choice of using a database is based on the assumption that it is 

easier to store the test scripts in a database than to run them directly against the output 

data.  

1.4 Aim of thesis 
The aim of this thesis is to investigate the possibility to extend the use of output data by 

examining a new test method. The method is based on storing information from test 

scripts in a database and developing an algorithm to run tests upon output data from HIL 

simulations. The examination of the new test method will be performed by:  

 Determining whether a relational database or a NoSQL database is most suitable 

for storing the test scripts. 

 Establishing requirements for a test script database and a search algorithm. 

 Proposing different database designs and evaluate their suitability to support the 

functions of the search algorithm. 

 Developing an algorithm that utilises information stored in the test script database 

to run tests upon output data. 

1.4.1 Delimitations 
The target of this thesis is rather to present a proof of concept than to present a fully 

functional application. The extraction of data from the test scripts will be performed 

manually. As this is a time consuming work the number of test scripts inserted into the 

database will be limited to two.  

1.5 Relevance of the database test method 
The database test method is primarily intended to complement the test method which is 

currently applied at Scania for integration testing. The difference between the new test 

method and the test method currently applied at Scania is that the current one investigates 

errors which are foreseen to occur whilst the new test method is intended to help 

disclosing errors that are more difficult to foresee. The applied Scania test method is used 

to control that a stimulus triggers an expected response as desired while the database test 

method is meant to control if an expected response ever occurs without being triggered 

by a valid stimulus. In other words, the applied Scania test method is used to control that 

the fog lights turn on when toggling the fog light switch while the database test method 

controls if the fog lights are ever turned on without the switch being toggled. The two 

methods are intended to detect different types of errors. It would also be of interest to 

Scania to investigate if the database test method could replace the applied Scania test 

method as storing the tests in a database instead of in test scripts would enable testing in 

new ways. 

                                                           
5 Logging all signals for each script would mean that each database file would contain approximately 
10 000 signals instead of containing 10-20 signals as they currently do. At the moment the logging has to 
be performed manually by copy and paste signals from one script to another and then run the chosen 
script in the HIL lab. In this thesis logging has been performed on a small scale, signals from one script 
have been logged in the execution of another script. 
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1.5.1 Database test method as a complement to current testing 
The database test method would be used to detect errors that are difficult to foresee and 

thus not covered by the applied Scania test method. The database test method shall be 

able to detect expected responses occurring without being triggered by valid stimulus. 

Though it shall not be able to determine what actually triggered a faulty triggered 

expected response. Identification of the trigger lies beyond the delimitations of the 

database test method and is intended be performed manually. 

1.5.2 Using test script database to test upon data generated without test 
scripts  
Currently the executions which are tested are completely run by the test scripts. The test 

scripts are running the simulation as well as they are running the tests, i.e. confirming the 

expected value of a limited group of signals. In the HIL lab it is possible to simulate input 

signals without the test scripts and it would therefore be desirable also being able to run 

the tests without the test scripts. The alternative way to simulate input signals is to 

manually set the signals using an interface in the HIL lab. By storing the output data 

generated in this alternative way in a database and by storing the tests in another it would 

be possible to do testing without using test scripts.      
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 2. Theory  
This chapter begins with descriptions of different database models. First the relational 

database model is introduced followed by three different NoSQL database models. The 

aim of these sections is to familiarise the reader with different database concepts and lay 

a foundation for an evaluation of NoSQL databases. This is followed by a section were 

conceptual tools which have been used in this thesis project are presented.  

2.1 Relational model 
The relational database model was introduced in 1970 by the IBM employee Edgar Codd. 

The model builds its foundation on the mathematical concept of relations. Relations are 

based on the theoretical foundation of set theory (Elmasri and Navathe 2010). In 

mathematical terms, a relation is the mapping of elements from one set to another. 

In a relational database, relations can be perceived as two dimensional tables with 

columns and rows. In formal language the tables are called relations with tuples (rows) 

and attributes (columns) (Ponniah 2003). Relation-table, tuple-row and attribute– column 

are used interchangeably in the report, it is advised that the reader familiarise with the 

concepts and their meaning. The tables have a pre-determined structure (Leavitt 

2010), from that follows that all the tuples stored in a table have the exact same number 

of attributes and the attributes are of the same type or format. The data needs to be 

homogeneous and structured to fit well into the tables (Parker, Poe and Vrbsky 2013). 

     

2.1.1 Relations in a relational database 
Relations are modelled by the use of primary and foreign keys. Each table has a primary 

key. The primary key is made up either of one attribute or a set of attributes which makes 

it unique so that a tuple can be identified by it. A tuple can sometimes be identified by 

more than one combination of attributes but there can only be one primary key. When 

one of these combinations is used in another table as a reference to the tuple it is called a 

foreign key. A foreign key is thus a set of attributes stored in one table with the purpose 

to identify a tuple in another table (Padron-McCarthy and Risch 2011).  

2.1.2 Structured Query Language (SQL)    
The Structured Query Language, SQL, is the standard language used for manipulating 

data inside a relational database. As SQL has been used to a large extent in the thesis 

some common features of the language will be presented. The most basic SQL commands 

are the SELECT, FROM and WHERE statements. SELECT specifies which attributes to 

include by stating the attributes name, FROM specifies the table from which the attributes 

are to be retrieved, WHERE is a conditional statement specifying conditions (Elmasri and 

Navathe 2010). Say that we have a table called Orders, the table contain the attributes 

orderId, customerId and date over some orders. Each tuple in the table represents one 

order. If we want to retrieve orderId and date from all orders with a customerId larger 

than 10 the SQL statement would be: 

SELECT orderId, date  
FROM Orders 
WHERE customerId>10 
 

Resulting in orderId and date information from all tuples in the Orders relation satisfying 

the WHERE condition. Apart from these basic SQL statements, the language provides 
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more complex operations to be performed. The COUNT statement is an example of a 

built in aggregate function returning the number of tuples or values specified in the query. 

SELECT COUNT(*) 
FROM Students 
 

return the number of tuples in the table Students. 

 

SQL operation JOIN: A distinguishing trait for SQL that other query languages lack is 

the join operation. Joins6 have been used to a large extent in the algorithmic development 

in this project.  The main use of joins have been in matching signals from the test script 

database with signals in the output database files. The join statement enables queries that 

span multiple tables and thus allows for comparison between tuples of different tables 

returning the tuples satisfying the comparison condition. There are different types of 

joins. Inner joins match the tuples according to the comparison condition and only return 

the matches, tuples that are not meeting the criteria are eliminated. Outer joins keep all 

tuples from one of the joined tables also when there are no tuples in the other table that 

comply with the comparison criteria. This means that some tuples might be kept even 

though they are incomplete containing null values.  A left outer join keeps all tuples from 

the left table (as specified in the query) and a Right outer join keeps all tuples from the 

right table (Elmasri and Navathe 2010). The example above had a table called Orders. Let 

us introduce another table called Customers, with attributes customerId, customerName, 

and country. To connect the customers in the Customers table with their orders a join 

between the tables Orders and Customers can be performed :  

SELECT Customer.customerName, Customer.country, Orders.orderId 
FROM Orders, Customers  
WHERE Orders.customerId = Customer.customerId 
 

The FROM clause specifies which tables the join should be performed on, the condition 

in the WHERE clause assures that only the tuples fulfilling the condition are returned. 

SQL operation VIEW: A view in SQL is a virtual table based on base tables. From our 

previous examples, Students and Teachers are base tables, stored in the database. A view 

is not stored physically in the database. A view is a way of storing data obtained from a 

query. Views have been utilized in order to store certain information in a table for easy 

reference. Storing the query data in a view eases forthcoming queries by making them 

less complex. By making a view of joined tables it is possible to query for data from both 

tables without having to perform a join in each query (Elmasri and Navathe 2010). This 

approach, first creating views and then perform a join was a way to make the queries in 

the algorithm less complex. As a consequence of using views a lot of data that already 

exists is copied, this was however assumed to not affect the overall performance of the 

algorithm as the amount of data was small7. To create a view based on the Orders and 

Customers tables returning the customerName and orderId the query could be written as: 

CREATE VIEW CustomerOrders AS 
SELECT Customer.CustomerName, Orders.orderId 
FROM Orders, Customers 

                                                           
6 There are three main algorithms for join operations inside a database. Nested loops, hash join and 
merge join.  
7 Small in this context refers to tables with about 120 000 rows and maximum 3 columns.  
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WHERE Orders.orderId= Customer.orderId 
 

This creates a virtual table, or view, containing the customer’s name and order id. 

2.2 NoSQL database models 
The relational model presented above has dominated the database landscape for a long 

time. Recent years have seen a rise in new types of database models with fundamental 

differences from the traditional relational model. A catch all term for these models is 

NoSQL databases. This section will summarize some of the previous studies made on 

NoSQL databases and lay the foundation for the evaluation of NoSQL database models 

presented in the result section. NoSQL stands for Not Only SQL. The expression “NoSQL 

database” can be anything from a key-value store to a graph database.  

According to Nayak et al. (2013) the rise of NoSQL databases has been driven by 

shortcomings of the traditional relational databases, for instance, regarding issues with 

scalability.8 This feature is presented as one important factor behind the growth of NoSQL 

models. Other important factors that are mentioned are NoSQL’s ability to better handle 

unstructured data (Aravindh,, Clarence and Shreeharsha 2012) and the ability to handle 

Big Data9 (Yishan and Manoharan 2013).  

 Scalability is a term that is repeated constantly in the literature regarding NoSQL 

databases. Nayak et al. (2013) argues that relational database performance degrades as 

data volume grows bigger. The statement is sweeping and not very precise but can be 

used as a general description of the motivation behind the emergence of NoSQL database 

models. It is out of the scope of this thesis to cover the large variety of NoSQL database 

that have emerged, furthermore, they all have their advantages and disadvantages. An 

evaluation of different NoSQL databases is not trivial, it all depends on the use case. To 

establish some common criteria for evaluation the criteria of previous studies has been 

investigated. Tiwari (2011) and Indrawan Santiago (2012) have performed extensive 

studies on NoSQL databases resulting in a couple of comparison criteria that will be used 

as benchmarks in this thesis when NoSQL models are evaluated. Tiwari’s (2011) 

comparison criteria consists of scalability, consistency, support for data models, support 

for queries and management vis. Santiago (2012) suggest the following as basis for 

comparison: data model, transaction model, support for ad hoc queries, indexing, 

sharding and license type. Not all of these are relevant regarding the problem in this thesis. 

The most relevant were kept disregarding the criteria that were not applicable to the thesis.  

The basis for evaluation used will be data models, support for queries and license type as 

they are best aligned with the problems associated with development of the test script 

database. The next section will introduce three10 different types of NoSQL database 

models and their features. The review will later be used to determine which type of model 

is best suitable to further investigate. 

                                                           
8 Scalability in database terms refers to the ability of a database to expand efficiently as more data 
and/or users are added to the database. 
9 Big Data is another ill-defined term and have become a buzz word but it is usually described by three 
characteristics: Volume, Variety and Velocity, Tiwari (2011) defines big data as any data set over a few 
terabytes.  
10 There are many other models such as graph databases, object databases, XML stores etc, they will not 
be covered in this report. 
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2.2.1 Document-oriented database, MongoDB  

Document databases store data in the form of documents instead of using relational tables. 

The data format of the documents is usually JSON or XML (Arora and Aggerwal 2013). 

There are several different versions of document databases. The one that has been 

investigated more closely during this thesis, is MongoDB. The documents in MongoDB 

are similar to the tuples in a relational database. Furthermore, documents can be stored in 

collections which are similar to the concept of relations. The documents in MongoDB are 

stored in binary JSON format called BSON. Collections are not constrained by fixed 

schema, documents with different sets of attributes can be stored in the same collection 

(Arora and Aggerwal 2013; MongoDB 2014).   

                  Document-oriented database                                 Relational database 

 

 

Collections      Tables 

           

Documents      Rows 

 

Figure 3.  Illustration of the structure of a document-oriented database and a relational 

database.   

The documents in Mongo consist of key-value pairs (Plugge, Membrey and Hawkins 

2010). A simple illustration of a document called Person is depicted below. The document 

is stored in a collection called Citizens.  

{“_id”: “002020311241”,  

"Name": "Sue",  

 “Age”: “34”      

  "City”: "Stockholm",  

           "Phone_numbers": [”+46702334232","+469013816”],  

           "Social_security_nr": "12345678",  

"Children": {"Name": "Signe", "City": "Sydney", "Social_security_nr": "88382673"}}  

The document contains information about a person, the id uniquely identifies the 

document. “Name” is a key and “Sue” the value associated with the key. The document 

Person also contains information about the person’s children where the information about 
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the child is something called an embedded document, that is, a document inside a 

document.  The use of embedded documents shows some of the flexibility with the 

MongoDB data model. Embedded documents make it possible to retrieve data about a 

person and it’s children in one query operation, while in a relational database this might  

required a join operation (depending on how the data is modelled).  

Relation modelling in MongoDB: Relations can be modelled either by the use of 

references or embedded documents. By storing the id of one document in another 

document, a relations between the two documents is created. A different approach 

concerns the use of embedded documents. As stated in the Citizen document example 

above, the embedded document Children creates a relation between the Person and the 

Children document.   

Queries in MongoDB:  Queries in MongoDB are executed with a syntax similar to the 

JSON format. Queries are issued using the find() and findOne() methods. Queries in 

MongoDB select documents from a single collection. Running a query in Mongo equates 

to specifying a criterion or condition to determine what is returned (MongoDB 2014). In 

addition to the criteria, projections can be performed to further specify which fields to 

include. In its simplest form a query is executed with the following syntax:  

db.collection.find()  

The method accepts both the criteria and projections returning a cursor for all matching 

documents.  An example of a query selecting all documents in the Citizen collection being 

older than 30 returning only the name field in matching documents.  

 

db.Citizen.find({ age: { $gt: 30} } , {name:1} })  

In the query above "db.Citizen.find" is telling Mongo to scan the collection Citizen,"{age: 

{gt:30} }" is the criterion with a query selector operator and “{name:1}” is the projection 

telling Mongo to only return the field “name” because the symbol 1 is equal to “true”.  

The query selection operator $gt ensures that the query returns only the documents where 

age is greater than 30. The same query in SQL would be:  

SELECT name  
FROM Citizen  
WHERE age>30  
 

Beside the document-oriented databases there exist two other NoSQL models that have 

been of interest in this thesis work, they are classified into two groups: key-value 

databases and column-oriented databases. 

2.2.2 Column-oriented database, Hbase 
A column database stores the data in a column-oriented fashion in contrast to the row-

orientation of a traditional relational database. Big Table and Hbase, with the latter being 

open source, are examples of column storages, Hbase has been investigated a little closer. 

The original paper laying the foundation for the first column database Big Table, was 

produced by Google (Chang et al. 2008), Big Table was designed to be a distributed 
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storage system capable of scaling petabytes of data across hundreds of servers. Hbase is 

modelled after Google’s Big Table. 

The model builds on column families where each column family can contain multiple 

columns. Column families offer flexibility by allowing different data types to be stored 

in each column in contrast to pre-defined types that are mandatory in a column belonging 

to a table in a relational database. Each column family has to be predefined, other than 

that, columns can be added when needed thus providing minimal need of upfront schema 

definition. Using a table from a relational database as comparison one can describe some 

features of the column model , a column family can be thought of as a column in a 

relational table, each row of the column database stores values only when data exist thus 

avoiding storage of null values. In a relational database, each cell stores one value, in 

Hbase, each cell in the table not only stores one version but multiple versions of the data 

thus providing good features for evolving data models (Tiwari 2011).  

Query support in Hbase: Founders of Hbase, Apache software foundation, states that 

Hbase does not support any advanced query language. The four primary data operations 

are Get, Scan, Delete and Put. Get returns attributes for a specified row, Put ads or update 

existing rows, Scan allows for iteration to be performed over multiple rows for a specified 

attribute and Delete simply removes a row in a table (Apache 2014). 

2.2.3 Key-value stores 
The key–value model has a similar structure to the document model. However the data 

structure in the key-value model is much simpler, data is stored as a value which 

corresponds to a key. In general, not all operations are being supported by the key-value 

model, such as joins and aggregate operations that are standard in SQL, which makes 

some functions impossible to conduct. The data is stored less structured than in, for 

example, a relational database (Pokorny 2011; Nayak, Poriya and Poojary 2013). Key-

value stores allow for schema-less data storage where the key-value pair usually consists 

of a string and a data type. The data can be of different types all depending on which 

programming language that is used, examples of data types are arrays or integers (Seeger 

2009). 

2.3 Conceptual tools 
Conceptual tool is a term used by the authors to describe techniques and methods used 

within software engineering. The conceptual tools presented in this section were used to 

model the test script data or to describe the algorithm. 

2.3.1 Entity-relationship model   
The Entity-Relationship(ER) modelling is a technique for building a semantic data model.  

It is a method to visualise real-world information as graphical notations or symbols. ER 

models are easily transformed into relational database tables. The ER data model 

components are entities, attributes, relationships and keys (Ponniah 2003). 
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Figure 4. Description of the data model components which form an ER model.  

 

2.3.2 Unified Modelling Language  
Unified Modelling Language (UML) is a flexible and customizable language which can 

be used for different types of modelling. It is used in the field of software engineering and 

is a way for members of a software development team to communicate (Naiburg and 

Maksimchuk 2001). 

 

2.3.3 Flowchart  
A flowchart is a diagram which describes a process or an algorithm. It is a graphical 

visualisation of actions and decisions. It demonstrates in what sequence actions are being 

taken and the possible outcomes of decisions taken in the process (IBM 1970). 

Commonly, these are used in analysing or designing processes.  

 

Figure 5.  Demonstration of symbols used in flowcharts.   
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3. Method, methodology and tools 
 

This chapter outlines the tools and methods used during this project. A presentation of 

used methods is followed by an overview of the work flow and a presentation of software 

tools used during this thesis project.  

 

3.1 Method  
To achieve the aim of the thesis different methods were applied. The aim was to 

investigate a method already specified by Scania, this resulted in some constraints 

regarding the overall approach. Already specified was the choice of using a database for 

storage of the test scripts, moreover Scania requested that both a relational database and 

a NoSQL database were implemented to try the different alternatives. The choice of using 

a database was based on the assumption that this approach would be the easiest to 

implement. The problem area was divided in to three blocks. The actual working process 

was not nicely divided in to the blocks described below, overlaps between different blocks 

frequently occurred. Especially the requirements gathering process was pursued all along 

the project. As a consequence of this, development of both the database and the algorithm 

was performed with a living requirements document having the effect that solutions were 

based on incomplete specifications. In figure 4, the different parts of the problem are 

introduced with the methods used to solve the problems. The course of action is described 

in the methodology section. 

 

Figure 6. Methods used during the thesis project to achieve the thesis objectives. 
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3.2 Methodology  
The initial block consisted of reaching an understanding of the problem area which was 

done by meetings with relevant Scania employees, literature review of Scania internal 

documents, literature review of research papers and scientific journal articles and a study 

of the code base for the simulation framework. The Scania internal documents were 

available on Scania's intranet while the remaining part of the studied material was found 

using Google Scholar and accessed by Uppsala University's library. After having reached 

a fundament knowledge of the problem the next block was initiated. Objective of the next 

block was to decide on a suitable database model for storing of test scripts. A literature 

review was performed to decide on one database management system to represent NoSQL 

databases. The representative of relational databases was initially elected owing to it 

having been used at Scania in similar contexts previously. Thereafter, suitable database 

designs for the two representatives were determined by an assessment of the different 

designs’ ability to live up to the requirements. Two databases were implemented and their 

impact on the algorithm complexity was assessed by testing how well necessary queries 

were performed. The last block consisted of development of an algorithm for running 

tests upon output data. Three test cases were formulated and the algorithm was tested by 

running it upon different sets of output data. Its ability to live up to the algorithm 

requirements was evaluated.   

3.2.1 Block 1: Understanding the problem area  
The first step prior to any development activities was to understand the testing procedure 

at Scania. An understanding was attained by meetings with Scania employees from the 

RESI group and by reviewing previous research, the Python test scripts and the code base 

surrounding the test scripts. Initially about 20 test scripts were studied in order to capture 

common features. Research papers and scientific journal articles were read to attain an 

understanding of integration testing in HIL labs and the tested components. Thereafter, a 

filtering of the test scripts started in order to extract necessary data to the test script 

database. To review the test scripts the software WingWare Python IDE was used.  

 

Filtering process: To enable the transfer of the test script content into a database the 

important elements of the test scripts had to be recognized. This was accomplished by 

analysing test scripts with all their functions and attributes and by consulting Scania 

employees. Most parts of the test scripts representing stimuli or expected responses were 

essential also to be represented in the test script database. It was however sufficient to 

extract 3-5 of the approximately 10-20 signals constituting a state. Those 3-5 signals were 

enough to identify the state and were recognised with the help of Scania employees.   

  

3.2.2 Block 2: Test script database development  
The development of the test script database was initiated by a literature review conducted 

in order to decide on a suitable NoSQL database management system and drafting 

of requirements for the database. It was not considered to be required to do an equally 

thorough investigation to decide on a representative of relational database management 

systems. This was due to that the common query language of relational databases makes 

them more interchangeable. The representative of relational databases was initially 

chosen to be SQLite. SQLite was chosen because it had been used by the RESI group in 

a previous project for storing HIL lab output data. Later in the project SQLite was 

replaced by PostgreSQL. The reason to the change was that PostgreSQL provided better 

management tools and a separate server process. Only one design of the NoSQL database 

was considered while three different relational database designs were evaluated. After the 
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evaluation of relational database designs one relational database design was implemented 

as well as one NoSQL database design. The requirements were updated and revised all 

throughout the project.  

 

Requirements gathering: The requirements were, as mentioned earlier, collected and 

formulated along the development process. They were collected at meetings with 

employees from the RESI group where the employees expressed their expectations on the 

new test method and its relevance to Scania. All collected requirements were graded on 

the basis of importance.  

 

Determining NoSQL database representative: Research papers and scientific journal 

articles on NoSQL databases were reviewed to obtain an understanding of advantages 

and disadvantages of the different NoSQL database models. Criteria, relevant for the test 

script database, for comparison of NoSQL database models was collected from previous 

studies. An evaluation based on the criteria resulted in that one NoSQL database model 

was selected to continue with. The selected NoSQL database model was MongoDB. 

 

Database design: The database design started with modelling of data which was 

performed mainly using Entity-Relation diagrams (ER) and Unified Modelling Language 

(UML). It was performed to provide an overview of the data, facilitating the database 

design. Four design drafts were evaluated more closely, one MongoDB design and three 

relational database designs. Document-oriented MongoDB offered more freedom when 

designing and modelling the data than the relational model did. MongoDB allowed 

storing the test script data in a way that was consistent with the test script structure. An 

obvious design was therefore to store the test script data in the database under the test 

script structure. Alternative ways of designing the Mongo database for storing the test 

scripts were not considered to offer any additional advantages. Thus, the only design 

regarded was the one preserving the test script structure. The relational model required 

the data to be modelled so that it would fit in tables. When modelling the data to fit into 

tables the data structure lost resemblance with the test scripts. To decide on an appropriate 

design for the relational model an evaluation of the designs’ ability to meet the 

requirements was made. Owing to the fact that the evaluation was done to determine the 

most suitable relational database design the MongoDB design was not a part of the 

evaluation.  

 

Database implementation: In the implementation phase of the test script database the 

data extracted from two python scripts was inserted into tables designed in the previous 

phase. The final relational database was implemented in PostgreSQL. 

The Mongo database was initially constructed from the shell. In order to get a graphical 

overview of the Mongo database the GUI MongoVUE was used. An online JSON editor 

was used to create the structure of the MongoDB documents which were then inserted in 

to the Mongo database using MongoVUE. SQL and the query language of MongoDB 

were tested and evaluated based on how these would affect the algorithm design. 

MongoDB was considered to require a more complex algorithm design. 

 

3.2.3 Block 3: Algorithm development  
The development of the algorithm was conducted as a proof of concept, the purpose was 

to test the database test method and to illustrate its field of application. It started by 

formulation of requirements followed by design drafting and prototyping. The phases of 

this block were performed iteratively.  
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Requirements: As the database requirements, the algorithm requirements were 

formulated by meetings with employees from the RESI group and by analysing future use 

areas of the algorithm. The requirement gathering of the algorithm and the requirement 

gathering of the database started simultaneously even though the documentation of the 

former started first after the database development process had ended. The requirements 

of the algorithm were regularly updated throughout the project.   

 

Design: When the first version of the requirements had been formulated a first flowchart 

was created to show the overall design of the algorithm.  The first design showed the main 

tasks of the algorithm and in what order these were to be done. To create flowcharts the 

web-based diagram editor Gliffy was used. The design process was restarted after having 

obtained better understanding of problems and tasks of the algorithm by developing 

prototypes.  

 

Prototype development: The algorithm was written in the programming language 

Python using WingWare Python IDE. Python was a natural choice as it was the 

programming language for the simulation framework. Flow control and embedded SQL 

were the main parts of the code. An alternative investigated was stored procedures, 

providing both branching and looping to be executed directly in the database without data 

being passed to an application. Stored procedures were never implemented but might be 

worth considering for future implementations, PostgreSQL fully supported this option 

whilst SQLite did not.  

The prototype development started with a simplified prototype which was developed 

based on the first flowchart created. This prototype was tested against a mock-up database 

containing fabricated output data. The mock-up database was created with SQLite 

database manager. It contained data similar to the real output data but with only a few 

signals. The signals were represented for 25 timestamps. After having tested the algorithm 

on fabricated output data it was tested on real output data from the HIL lab. The two test 

scripts which had been inserted to the test script database were run in the HIL lab to 

generate output data.  

The algorithm was at first developed using both output data and test script data from test 

script A. By using the output data from the same test script as from which the test script 

data was fetched it was assured that there were expected responses, states and stimuli for 

the algorithm to find in the output data. An expected response was expected to be present 

in the output data for a couple of seconds and since the output data was sampled every 

0.002 second that meant the expected response would be found at several timestamps. 

The interesting timestamp was the one appearing first since it indicated when the search 

for stimulus should start.  For an expected response to be considered to have been found 

all signals of the expected response needed to appear simultaneously. SQL queries made 

it possible to fetch all signals of an expected response from the test script database, search 

for them in the output database, establish how many of them that occurred at a given 

timestamp and determine which the first timestamp was where the highest number of 

expected response signals was to be found. After having formulated these queries and 

tested those on the output data it was discovered that not all signals where sampled at 

each timestamp. Signals were randomly sampled at odd or even timestamps each 0.002 

second. The algorithm needed to be changed in order for it to treat signals sampled 0.001 

seconds apart as signals appearing simultaneously. When the algorithm was able to 

determine whether or not it had found an expected response it was developed to search 
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for the valid stimulus and state using the same principles as for searching an expected 

response. The algorithm was expected to search through three different types of output 

data which made it relevant to formulate three test cases. The three test cases were 

formulated to tests the algorithm’s ability to;  

1. find an expected response, stimulus and state when present in the output data 

2. determine that no expected response was present and therefore abort the search 

3. find an expected response and determine that no valid stimulus was present and 

therefore abort the search 

To give a better overview of the algorithm a new and more detailed flowchart was created 

using Gliffy. This flowchart is found Appendix C.   

3.3 Software tools 
All of the software tools used in this project are stated below together with a short 

description.  

Gliffy  Gliffy is a web-based diagram editor which offers online creation of flowcharts, 

UML diagrams and ER diagrams amongs other things.   

WingWare Python IDE Version 4.1 WingWare Python IDE is a development 

environment for Python programmers. 

MATLAB® Version R2011B (Matrix laboratory) Is a programming language and an 

numerical computing environment developed by MathWorks. Matlab can be used to 

analyse data, develop algorithms and create models and applications.  

Python Version 3.3.4. Python is a high level programming language which fully supports 

object oriented programming and structured programming. It is often used as a support 

language for testing by software developers.  

MongoVUE Version 1.6.9 MongoVUE is a desktop application for Windows OS which 

provides a GUI interface to work with MongoDB.  

Sqlite database browser 2.0 SQLite database browser is a GUI editor which eases 

SQLite database using for non-technical users. It allows creating, modifying and editing 

SQLite databases. 

PgAdmin Version 1.18.1 PgAdmin is an open source development and administration 

platform for PostgreSQL. 

PostgreSQL 9.3 PostgreSQL is an open source, object-relational database management 

system.  

SQLite Version 3.8.4.3 SQLite is a SQL database engine. It does not have a separate 

server process like most other SQL databases. Instead it reads and writes directly to 

ordinary disk files of a cross-platform format.   

SQLite manager Version 0.8.1 SQLite manager is an application available to Mozilla 

Firefox web browser which provides a GUI interface to manage SQLite databases. 

(https://addons.mozilla.org/sv-se/firefox/addon/sqlite-manager/) 

R Version 3.0.2 R is a programming language and an environment for statistical 

computing and graphics.  
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4. Database design 

In this chapter follows the results from the database design phase in which NoSQL 

database models were evaluated, requirements were established, different database 

designs were proposed and evaluated, one relational database design and one NoSQL 

database design were implemented and evaluated. The database design started with an 

analysis of the test script data which was to be stored in the database.  

4.1 Analysing test script data 
The purpose of the test scripts is to perform system and integration testing in the HIL lab 

by testing UF scenarios. System and integration testing is performed to test different 

component configurations. Not all UFs are available for every component configuration 

wherefore all test scripts contain information about which configuration it is valid for. 

This information is called Functional Product Characteristics (FPC) conditions.  

The test scripts vary considerably. They contain a varied number of acts depending on 

the number of UF scenarios that are being tested. Each test script differs from the other 

not only depending on the number of acts but also depending on the structure of the acts. 

Commonly states are set in the pre and post acts and the other acts contain setting of a 

stimulus and the control of an expected response. Though, that is not always the case. 

States can be set in other acts as well and sometimes more than one stimulus is required 

to trigger an expected response.  

Most test scripts contain time information. The time information is intended to slow down 

the execution of the test scripts so that the physical components get time to react to a 

stimulus before the expected response is controlled by the test script. An expected 

response is however not triggered correctly if it is delayed. Information about what is 

considered to be a delay is found in the test scripts.  

In most test scripts there are some acts which are dependent on the previous act. The 

dependency is due to the test scripts being designed to be executed from top to bottom. 

One act might control that the brake lights go out when releasing the brake pedal. It 

requires that the brake pedal has been pressed to release it which is why there is a 

dependence between the act where the brake pedal is released and the previous one where 

it is pressed.     

Test script signals can attain different values but when referred to as parts of a state, 

stimulus or expected response they are always associated with specific values. An 

expected response most often consists of checking that the signals are == to a certain 

value. In addition to equality assertions, checks can control if a signal is >=, <=,!= or 

found in a specific interval. 

The signals that were determined to be necessary to be stored in the test script database 

were of three different types. There were CAN signals which correspond to the signals 

being sent on the CAN bus network. There were I/O11 signals which correspond to for 

example a brake light being active or not and there were signals corresponding to stimuli 

which mostly consisted of different driver variables and parameters belonging to the 

simulation framework. 

                                                           
11 Digital and analogue inputs and outputs. An example is a voltage signal. 
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4.2 Evaluation of NoSQL models    
The results in this subsection are based on the literature review of NoSQL databases 

presented in the theoretical part. An observation made while scanning the NoSQL 

landscape was that many of the problems these models are aimed to solve are not present 

in the problem area of this thesis. The relevant criteria for a comparison of NoSQL models 

in this thesis was considered to be the three presented in the theoretical chapter: support 

for data models, support for queries and license type.    

The column oriented database model that was investigated provided impressive scaling 

capabilities, this feature was however not relevant to the thesis problem.  Furthermore, 

the column model provided good storage for evolving data models, the test scripts are 

however static and this feature would have been unnecessary. As Hbase is intended to be 

distributed across many servers the architectural pattern would not have been able to 

implement at Scania, the necessary hardware was not in place. Even if it would have been 

possible, one server had been enough as the amount of data to be stored by the test script 

database was fairly small. Furthermore, the query language of Hbase, although only 

briefly investigated, did not seem to provide any advanced features with its four basic 

operations get, put, scan and delete. The decision to label it as non-advanced was solely 

based on reading about the language, a more thorough investigation was not performed. 

MongoDB provided something in between, providing a more relaxed schema than a 

relational database but still providing the ability to model relations. With respect to the 

structure of the test scripts the data modelling options provided by Hbase and key-value 

stores were considered to be inadequate. Important to note is that no data modelling was 

tried with either Hbase or a key-value store. With Mongo the option to model each 

document differently was considered an advantage. The nature of the test scripts where 

each script had different attributes could easily be modelled with the document structure 

provided by Mongo.  MongoDB also offered the most advanced query language which 

was an important factor when deciding which NoSQL model to choose.  With respect to 

the problem MongoDB seemed like the best choice to further investigate. The evaluation 

is summarised in the table below grading the different models with either poor, ok, good 

or excellent. 

Table 1. Summarisation of different database models’ ability to live up to given criteria. 

Database model  Support for queries  Support for data model  License type  

Document database, MongoDB  Good  Good  Open source  

Column database, Hbase  Ok  Ok  Open source  

Key – value store  -  Poor  -  

 

4.3 Requirements 
The requirements for the test script database were summarized in a requirement table. 

Furthermore, they were placed in different categories depending on their nature. The 

following categories the performance, clarity, content, functions and design of the 

database. 
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Table 2. Requirements for test script database. Importance: 1 = mandatory, 2 = 

important, 3 = nice to have   

Requirements for test script database    

Special requests and constraints      

Shall be free and open source with an active community   1   

Performance      

Shall allow up to at least 1000 test scripts to be stored.    1   

Clarity      

The design shall be intuitively understandable for 
employees at the Scania department RESI.   

2   

Content      

Shall contain data in the form of states, stimulus and 
expected responses.   

1   

Shall contain information about which test script the 
states, stimuli and expected responses belong to.   

1   

Shall contain FPC conditions associated with test scripts.   1   

Execution time between a stimulus and an expected 
response shall be stored.   

3  

Execution time between different stimuli in the same act 
should be stored.   

3   

Shall contain a unique part identification number for each 
unique stimulus, state or expected response   

2  

Shall contain information regarding dependence in 
between acts. 

3   

Function      

It shall be possible to search for signals associated with a 
given state or expected response.   

1   

It shall be possible to search for names and properties of 
the states.   

1   

It shall be possible to search for every stimulus that is a 
valid trigger of a certain expected response     

2   

Design  

The database design shall support the functionalities of the 
algorithm. 

1 

    

Special requests and constraints: It was a request from Scania that the database software 

used in this project was free and open source with an active community.  

Performance: The number of existing test scripts used by Scania in the HIL simulations 

at the time of execution of this project was approximately 300. For the database test 
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method to be useful for Scania it required that the database could store up to 1000 test 

scripts with respect to memory usage.  

Clarity: The database test method would complement the integration testing performed 

at Scania’s RESI department. The RESI employees were best able to determine the clarity 

of the database design since they had the deepest knowledge of the test scripts.  

Content: The most essential information that the database was required to contain was 

about whether a signal belonged to an expected response stimulus or state. The signals 

belonging to an expected response were supposed to be foregone by signals forming a 

stimulus. That is why one requirement of the database was to store the information about 

which one of the three categories the signals from the scripts belonged to. A certain 

expected response can occur in more than one test script being triggered by different 

stimuli in different test script. It is required to give each unique expected response and 

stimulus a unique part identification number to make it possible to keep track of all stimuli 

which can trigger a certain expected response. The same applies to states. The FPC 

conditions gave information about when the test scripts were valid to run against the 

output data. Thus, another requirement of the database was that it had to contain 

information about the association between FPC conditions and test scripts. The time in 

between a stimulus and the following expected response was not allowed to exceed a 

predetermined limit. If it did exceed the limit it meant that something was wrong. Thereof, 

a second requirement was to store information about the maximum execution time. More 

seldom was that several stimuli together triggered an expected response and in those cases 

it was of interest to store the maximum execution time between the stimuli.  

Function: In order to run the tests from the test scripts on the data in the output database 

files it was essential being able to query for all signals belonging to a certain expected 

response or a certain stimulus. When getting a match of an expected response in the output 

database the following step was to search for the stimulus that triggered it. It had to be 

possible to query for the information about which different stimuli that were valid triggers 

of a certain expected response.  It was of interest to be able to query for the name of a 

state and information about all signals that the state included. This was desired to easily 

update a state.     

Design: The test script database was developed as a part of the database test method 

which made it important that the database was designed to support the algorithm. This 

means that all changes in the database design that could be made to reduce the complexity 

of the algorithm should be made.           

4.4 Presentation of database designs  
Three different relational database designs and one MongoDB design were considered 

for storing the test scripts. The three relational database designs derived from trade-offs 

which were made modelling the data so that it would fit into relational tables. One design 

meant storing null values while the other two meant storing redundant data.  

4.4.1 NULL Solution    
The NULL solution is a relational database design for storing of test scripts which results 

in storage of null values. The solution involves five tables, one for state, one for stimulus, 

one for expected response, one for test scripts and one relational table.  
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 Figure 7. ER diagram illustrating the NULL solution. The attributes called Signals and 

FPC represent multiple attributes and examples of these attributes can be found in the 

squared boxes to the right.    

The test script table contains information about FPC conditions. The attributes of the test 

script table are several FPC conditions and the primary key is the test script id. State, 

stimulus and expected response are entities. The table contains consists of foreign keys 

that identifies which specific states, stimuli and expected responses that belong to a 

certain test script. 

 Table 3. Illustration of a table for the test script entity. 

Test script ID FPC1A FPCIB FPC2413A FPC2413B ......... 

TestScriptC FPC1A NULL NULL NULL NULL 

TestScriptD NULL NULL FPC2413A FPC2413B NULL 

......... ......... ......... ......... ......... ......... 

The primary keys of the stimulus and expected response tables are id codes which need 

to be specially invented for the database since they do not exist in the test scripts. The 

primary key of the state table is state name. State names are found in the test scripts. Each 

of the three tables has got signal names as attributes i.e. signal names are stored as meta 

data. Signal values are stored as data in the tables. Due to the signals being stored as 

attributes the table grows large. A tuple represents a specific state, stimulus or expected 

response having a unique set of signals. For each tuple there are many fields containing 

null values. A tuple that represents an expected response would contain signal values only 

in the fields of signals that were a part of that specific expected response.  
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Table 4. Illustration of a table for the state entity.  

State Signal 1  Signal 2 Signal 3 ...... Signal 

55 

Signal 

56 

...... 

Parked  0 NULL NULL NULL 1 80 NULL 

Idling 1 NULL 1 NULL 0 80 NULL 

...... NULL NULL NULL ...... NULL NULL ....... 

 
4.4.2 Entity attribute value solution    
The Entity Attribute Value (EAV) model is used to avoid sparse tables which contain 

many null values. The EAV model is thus used when each entity has a small number of 

attributes but when the total amount of attributes for all entities is vast. Commonly an 

EAV table has got three columns where one is for a characteristic that identifies the entity, 

another one presents an attribute of that entity and the last one which adds a value to the 

attribute. (Thanisch et al. 2011) The EAV model was used when designing the Signals 

table and also inspired the design of the Test script table wherefore this solution goes by 

the name EAV solution. The EAV solution involves five tables; one for signals, one for 

test script parts, one for test scripts and two relational tables.    

Figure 8. ER diagram illustrating the EAV solution. 

 

The test script table contains information about FPC conditions. The composite primary 

key consists of its two only attributes namely test script id and FPC conditions. The table 

representing the test script part entity contains information about test script parts such as 

expected responses, stimuli and states. Attributes of the test script part entity are unique 

number, type of group, test script number, specific type and part identification. The test 

script number declares which test script the part belongs to. Type of group indicates in 

which act the part is found. Specific type is either expected response, stimulus or state. 

Part identification identifies every unique expected response, state or stimulus. This 
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means that when a certain expected response, state or stimulus occurs in more than one 

test script the part identification of that part will occur in more than one tuple.  

Table 5. Illustration of a table for the test script entity. 

Test script ID FPC conditions 

TestScriptC FPC1A 

TestScriptB FPC2413A 

TestScriptB FPC2413B 

Test script A FPC1A 

...... ...... 

 Table 6. Illustration of a table for the test script part entity 

Unique 

number 

Test script no Type of group Part 

identification 

Specific type 

1 Test script C Pre Parked State  

2 Test script C Act1 STC001001 Stimulus  

3 Test script C Act1 ETC001001 Expected 

response 

4 Test script C Act2 STC001002 Stimulus  

5 Test script C Act2 ETC001001 Expected 

response 

...... ...... ...... ....... ....... 

One relational table, test script inner order, stores information about in which order the 

parts occurs in the test scripts. This table has a composite primary key consisting of the 

primary keys of the test script entity and the test script part entity namely test script ID 

and part identification.   

The signals table is designed as prescribed by the EAV model with an identification 

number, a signal name attribute and a signal value attribute. Every combination of names 

and values is unique with the identification number as the primary key. As a relation 

between test script part and signals there is one table which contains information about 

which signals a part consisted of. Both attributes in this table were foreign keys and 

constituted a composite primary key.   

Table 7. Illustration of a table for the signals entity 

Identification 

number 

Name  Value 

1 BrakeLightRequest 0 

2 BrakeLightRequest 1 

3 BrakeLightRequest 2 

4 StopLampIntended 0 

5 StopLampIntended 50 

........... ........... ......... 
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4.4.3 Redundant solution 
The Redundant solution is a relational database design which derives from the previously 

presented EAV solution. This solution includes two entities, one called test script data 

and another called test script.    

 

                                                                        Figure 9. ER diagram illustrating the Redundant solution. 

 

The test script data entity has six attributes; test script, act, part, signal name, value, and 

identification number. Even though a signal with the exact same name and value could 

occur in another script they are in this design considered to be unique as they are found 

in different scripts or different parts of scripts. This results in that many fields in the table 

contained the same value i.e. a lot of redundant data. When a new test script is inserted 

into the database no existing tuples can be reused. From that follows that the table is 

growing with as many tuples as there are signals in the script to be inserted.    

Table 8. Illustration of a table for the test script data entity. 

Test script Signal name Signal 

value 

Part  Act Identificati

on number 

TestScriptC ParkingBrake 1 Parked 0 1 

TestScriptC BrakePedalPosistion 50 Stimulus 1 2 

TestScriptC StopLampIntended 1 Expected 

response 

1 3 
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........ ........ ........ ........ ........ ........ 

 

4.4.5 Design of MongoDB  
Embedded documents were used to express relations between parts of the test scripts 

which consisted of other parts. For example an act consisted of a stimulus and an expected 

response which in turn consisted of signals having certain values. Modelling relations in 

MongoDB can be performed either by using embedded documents or by using references. 

Embedded documents were used because they allowed for simpler queries so that 

information about entities involved in a relation could be retrieved with one query. If 

references had been used, multiple queries would have been necessary. 

 

Figure 10. Illustration of a MongoDB document containing data from a test script.       

4.5 Evaluation of relational database designs with respect to 
requirements  
 An evaluation of the different relational database designs was performed in order to 

decide on one relational design to proceed with. The different designs were evaluated in 

terms of how well they lived up to the database requirements.  

Special requests and constraints: The different relational database designs could be 

implemented regardless choice of database management system. Since the special request 

and constraints requirement was related to the database management system all designs 

equally complied with this requirement.  

Performance: The NULL solution was assumed to be the one of the designs to allocate 

most memory due to it containing even more null values than actual data. The 

performance requirement was considered to be met by all of the designs since the memory 

required for storage of 1000 test scripts could be provided by any computer.   
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Clarity: The NULL solution and the Redundant solution proved to be the most intuitive 

of the three designs. The clarity of the EAV solution was low.     

Content: The database designs were developed based on the content requirements. Thus, 

all of the designs should have complied with the most essential content requirements but 

not all of them did. The NULL solution failed to meet one of the requirements which were 

considered to be mandatory. It was not designed to store information about in which order 

stimuli and expected responses occurred in test scripts. The EAV solution complied with 

all content requirements, the ones considered to be mandatory as well as the others. 

Neither the NULL solution nor the Redundant solution were designed to store time 

information, dependence or unique part identification number. That kind of information 

was considered to be important or nice to have in the database but not mandatory.    

Function: All three designs met the function requirements which were considered to be 

mandatory but all of them failed to meet a function that was considered to be important. 

The requirement that the designs failed to meet was to search for all valid stimuli which 

could trigger a certain expected response.  

Design: The NULL solution and the EAV solution required the algorithm to be more 

complicated than the Redundant solution did. The NULL solution required a more 

complicated algorithm as it stored signal names as meta data instead of data. The signal 

names were stored as attributes instead of being inserted into the table. Converting signal 

names from meta data to data would have been a task of the algorithm. The EAV solution 

required several joins for each necessary query that was to be made which made the 

algorithm more complicated. Querying for an expected response which was easily made 

using the NULL solution or the Redundant solution was done by several joins using the 

EAV solution.  

Evaluation summary: The database designs differed mainly on three of the six 

categories; clarity, content and design. The Redundant solution and the NULL solution 

both meet the clarity requirement and both failed to meet some of the content 

requirements in opposite to the EAV solution which failed to meet the clarity requirement 

but met all of the content requirements. The design requirement, which was stated to 

ensure that the database was designed with the algorithm in mind, decided which database 

design to proceed with. The Redundant solution was the one to best support the 

functionalities of the algorithm and was therefore the solution selected to continue with.  

4.6 Comparison between a MongoDB and a relational 
database  
Both a Mongo database12 and a relational database were implemented. The 

implementations were made to determine which of the two was better suited to store the 

test scripts.  

The use of embedded documents was one of MongoDB’s main advantages because it 

offered clarity due to a high resemblance between the database design and the actual test 

scripts. The query language of MongoDB did not offer any operation similar to SQL joins, 

this fact was not immediately obvious. When querying for an embedded document the 

parent nodes were returned together with the embedded document which required the 

                                                           
12 JSON file and screenshot of the Mongo database is found in appendix D. 
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algorithm to be more complex. The complexity consisted of extracting the queried data 

from the parent node in order to use it to make queries in the output data. The largest 

drawback with Mongo was however the lack of join operations. Comparisons that could 

be executed with one command with SQL, owing to the join operation, would have been 

required to be performed by the algorithm using MongoDB. Query 1 shows a query made 

to fetch an expected response from the database in figure 13. The relevant data which was 

needed to search for the expected response in the output data was the signal names and 

values i.e. var5:80, var6:1 and var7:2. The parent nodes such as “act” and “act1” needed 

to be removed.  

Query 1 database.collection.find({name:”Test script A”} 
,{“act.act1.expectedResponse”:1}) 

Returns {“_id”: ObjectId(“dkel9t9”), “act”:{”act1”:{“expectedResponse”:{“var5”:80, 

“var6:1, “var7:2””}}}} 

Unlike MongoDB, the relational database did not require the algorithm to perform any of 

the comparisons between the script data and output data since the comparison could be 

performed by queries using joined tables. Tables in the test script database were joined 

with tables in the output database files. Query 2 shows the result of a join between table 

9 and table 10. Table 9 contains an expected response and table 10 contains the output 

data.  

Table 9 Relational table Expected containing one single expected response 

SignalName SignalValue 

Signal1 0 

Signal2 3 

Table 10 Relational table Output containing output data 

Time SignalName SignalValue 

1.000 Signal4 2 

1.001 Signal1 0 

1.002 Signal2 3 

1.002 Signal3 0 

 

Query 2 : 
SELECT Output.Time, Output.SignalName, Output.SignalValue 
FROM Expected, Output 
WHERE Output.SignalName=Expected.SignalName AND 
Output.SignalValue=Expected.SignalValue 

Returns the data in table 11. 

Table 11 Data returned by Query 2. 

1.001 Signal1 0 

1.002 Signal2 3 
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Due to the comparisons between test script signals and output signals being facilitated by 

join operations it was chosen to proceed with the relational database model. A screenshot 

from the implementation of the relational redundant solution is shown in figure 11. This 

was then used to perform the testing together with the algorithm. 

 

 
Figure 11. Test script data table in the relational database which was implemented and 

used during this thesis project. The table shows signals from one test script with the 

attributes script, name, value, type act and a primary key attribute called id.( Script and 

signal names have been removed due to employers request) 
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5. Algorithm design and development 

The content of this chapter represents an overview of the algorithm’s main functions, a 
description of how the algorithm and the test script database interconnect and a presentation 
of the implementation of an algorithm. The algorithm was used to run tests upon the output 
data.  

 5.1 Algorithm function overview 

The purpose of the algorithm was to use the information stored in the test script database 

to check for possible errors in the HIL lab output data. The type of error that the algorithm 

was meant to be able to find was a function of the truck, such as the headlights, being 

faulty triggered by some action of the truck driver, such as pressing the power button of 

the radio. Both functions and actions are represented in the HIL lab as signals with certain 

values. In the test script database a function is represented by an expected response and 

an action is represented by a stimulus. A stimulus is not a valid trigger of an expected 

response in all situations. Pressing the gas pedal in a parked car is not supposed to raise 

the velocity of the car. Thus, the algorithm was also meant to find errors where a stimulus 

had triggered an expected response without the presence of a valid state.    

Accordingly, the algorithm consisted of three main parts with different functions. The 

first part provided for searching an expected response. The following part was only 

performed if a match was found in the first part. If an expected response was found 

searches were made to find valid triggers of it, stimulus. The last part of the algorithm 

consisted of a search for valid states and was activated only if a valid stimulus had been 

found.  Searching and matching of signals was mainly performed with SQL queries 

embedded in python code. The solution used views and joins to match the script data with 

the output data. Signals were fetched from the test script database and a search for 

matching signals in the output database file was performed. SQL queries embedded in 

python code required use of cursor13 objects which were a central part of the code. Below 

is a general description of the queries used in the code when performing the first part of 

the algorithm, the search for an expected response.  

First a view was created containing expected response signals from the test script 

database. The table containing all signals in the test script database was called Scriptdata. 

Example query: 
CREATE TEMP VIEW Expected AS SELECT name,value 
FROM scriptdata  
WHERE script=’test script A’ AND act=1 AND type=’exp’ 

A join was then performed between an output database table and the view with expected 

response signals. This new view contained name, value and timestamp of the expected 

response signals which occurred in the output data. If none of the expected response 

signals were found an empty view was created. 

                                                           
13 A cursor in python allows python code to execute SQL commands against a database. Depending on 
database management system there are different libraries and modules in python providing interfaces. 
In this thesis project the sqlite3 library and the psycopg2 module have been used. The first providing an 
interface against SQLite database and the second against PostgreSQL database. 
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Example query: 
CREATE TEMP VIEW Matches AS SELECT 
signals.signalname,signals.value,signals.timestamp 
FROM exp,signals 
WHERE signals.value=expected.value AND signals.signalname=expected.name 

When a match was found the algorithm returned the timestamp where a stimulus search 

should begin. The stimulus search applied similar query construction as the first part 

where the expected response search was performed. If a valid stimulus was found the last 

part consisted of checking that valid state signals were present in the output. Again, 

similar query structure was applied as in the parts where searches for stimuli and expected 

responses. 

 

 

Figure 12. Flowchart illustrating the main functions of the algorithm. 
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 5.2 Requirements for algorithm    

The requirements were updated all along the project. The list of requirements increased 

as the development of the algorithm proceeded and necessary features were detected. The 

following table presents the requirements that were gathered: 

Table 12. Requirements for algorithm. Importance:1= Mandatory, 2 = important, 3 = 

nice to have   

Requirements for search and matching algorithm    

Looping    

The algorithm should be able to perform all tests which are 

valid for the FPC conditions of the output data 
3  

Expected response      

The algorithm must be able to get an expected response 

belonging to  a specific script from the test script database 

and look for matches in the output data   

1   

The algorithm must be able to decide whether expected 

responses from a match have occurred within an accepted 

time frame  

1   

The algorithm must be able to decide whether an expected 

response is the response of a stimulus or just the default 

value of the signal   

3   

Stimulus    

The algorithm must be able to fetch every stimulus which is 

a valid trigger of a given expected response and search for 

them in the output data  

1   

The algorithm must be able to determine that a stimulus 

occurred before an expected response according to a 

predefined time constraint   

3   

If an expected response is present in the output data but no 

stimulus is found, algorithm must be able to announce 

finding of possible error   

1   

State      

The algorithm must be able search and determine whether a 

state, which makes the stimulus a valid trigger of the 

expected response, is present in output data   

1   

The algorithm must be able to announce if finding that state 

is not compatible with stimulus and/or expected response   
1   

 

Expected response: The most fundamental requirement of the algorithm was to fetch an 

expected response from the test script database and search for the signals of the expected 

response in an output database file. When finding signals from an expected response, the 

algorithm had to be able to determine whether the signals were found within an accepted 

timeframe of 0.002 seconds. The algorithm had to be able to determine whether the 
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timeframe within which it found the signals was small enough to represent 

concurrency.  As some expected responses consists of signals having default values, these 

expected responses will get many matches without being preceded by a valid stimulus. 

The algorithm had to be able to determine if the finding of these expected responses 

constituted possible errors.    

Stimulus:  More than one stimulus could be a valid trigger of an expected response. Thus, 

the algorithm had to be able to fetch all valid stimuli for an expected response which had 

been found in the output data. If not finding a valid stimulus within a predefined time 

constraint preceding the expected response the finding of a possible error had to be 

presented to the user. The predefined time constraint was to be fetched from the test script 

database.    

 State: The algorithm had to be able to fetch valid states from the test script database and 

to search for them in the output data. If not finding a valid state the algorithm had to 

present the finding as a possible error for the user.    

5.3 Software architecture   
Here follows an introduction of the framework14 surrounding the database test method. 

Figure 13. Implementation layout 

.mat files: Every separate simulation resulted in a .mat file containing the data. Each 

signal from the HIL simulation was captured as a 1 X 1 structure array in Matlab. The 

data contained in each structure array consisted of name, value and an x-axis with 

timestamps.  Sampling time for each signal was 0.002 s, due to time lag in the simulation 

some signals were sampled at even timestamps whilst others at odd timestamps. 

Database files: The output database file15 consisted of one table, Signals, with attributes; 

SignalName, TimeStamp and Value. Each .mat file was converted into database files.  

  

                                                           
14 Two alternatives were tested for the database test method. One solution was, as described by figure 
17, to have the database files and the test script database separate. In the alternative, the database files 
were imported to the test script database.  
15 A screenshot from a real output database file is found in appendix D. 
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Table 13: Illustration of output data. Table Signals containing output data  

 SignalName TimeStamp Value 

1 Signal 1 0.002 0 

2 Signal 1 0.004 0 

... ... ... ... 

100 000 Signal 30 8.000 1 

 

5.4 Results from testing the algorithm  
Two test scripts were used in the process of testing the algorithm. Test script A, 

responsible for testing that pressing the brake pedal activates the brake light and test script 

B which tests that the reverse light activation is functioning correctly. Three test cases 

were formulated to test the algorithm and to illustrate the database test method’s field of 

application. The test cases covered the most common scenarios which the algorithm 

needed to be able to handle. The first test case was meant to test the algorithm’s ability to 

find an expected response and its valid stimulus and state when present in the output data. 

This was done by letting the algorithm fetch test script data from test script A in the test 

script database and to perform searches in an output database file generated by the same 

test script, namely test script A. 

The second test case was meant to control that the algorithm functioned well when no 

expected response was present in the output data. To perform this test case the expected 

response was fetched from test script A in the database and the output database file was 

generated by test script B. In all of the output database file generated by test script B 

signals corresponding to expected response, stimulus and state from test script A were 

logged. One of the output database files generated by test script B was discovered to 

contain some abnormal signals. It contained signals which were a part of test script A’s 

expected response even though it was not supposed to. The finding of a partial expected 

response was by the algorithm considered equivalent to not finding an expected response 

as the algorithm was developed under the assumption that only a full match of expected 

response was of interest. This finding could however be of interest and is discussed in the 

result discussion. The results from this special case can be found in the appendix G. 

The third test case was meant to control that the algorithm could find an expected response 

in the output data and determine that no valid stimulus was present. This test case was 

performed by manipulating data in an output database file generated by test script B. The 

data was manipulated so that an expected response from test script A was present.  

5.4.1 First test case: Finding expected response, stimulus and state 

The first test case was carried out to test the algorithm’s ability to find an expected 

response, stimulus and state when present. The output data was generated by the same 

test script as the one chosen by the algorithm from the test script database. This test case 

was performed to ensure that the algorithm worked properly before testing the algorithm 

against output data from other test scripts.  
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There were six signals representing the expected response in the script. Figure 14 shows 

the signals fetched from act 116 in the test script database. All signals except signal 117 

were searched for in the output data.  

Table 14. Showing result from query where the expected response of act 1 has been 

fetched from the test script database. Signal names  

 Name 

Character (255) 
Value 

Real 

1 V.StopLampIntended 1 

2 StopLightTruck[0|1]/Conversion/Out1 1 

3 StopLightTrailer[0|1]/Conversion/Out1 1 
4 BrakeLightRequest 1 
5 EBSBrakeSwitch 1 
6 BrakePedalPosition 50 

 

Stimulus fetched from test script database with corresponding value. 

Table 15. Showing result from query where the stimulus of act 1 has been fetched from 

the test script database. 

 Name 

Character (255) 
Value 

Real 

1 Pos_BrakePedal[%]/Value 80 

 

State signals from test script database with values. 

Table 16. Showing result from query where the state of act 1 has been fetched from the 

test script database. 

 Name 

Character (255) 
Value 

Real 

1 SW_ParkingBrake[0Off|1On]/Value                                                                                                                                         1 

2 EngineSpeed/n_Engine[rpm]/Out1                                                                                                                                                        100 

3 v_Vehicle_Ref[m|s]/Value                                                                                                                                                0 

 

A successful search by the algorithm should find the five expected response signals, 

return the time where the stimulus search should begin and report back if the stimulus 

was found and at which timestamp. Finally a search for the state signals should be 

performed, checking if a valid state was present at the time of the expected response. 

Execution of the algorithm on the first test case gave the following results. Starting with 

searches for expected response, the algorithm first presented expected response signals 

                                                           
16 The test script consisted of two acts, no searches was performed on signals from act 1. 
17 Due to logging error, signal 1 was not logged in the HIL simulation thus is not present in the output 
data 
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included in test script A. Illustration 1 shows excerpts from running the algorithm in the 

python shell18. 

Illustration 1: Signals belonging to expected response included in test script 

database 

Which script to run against output?: Test script A 

Signals included in script Test script A 

V.StopLampIntended 

StopLightTruck[0|1]/Conversion/Out1 

StopLightTrailer[0|1]/Conversion/Out1 

BrakeLightRequest 

EBSBrakeSwitch 

BrakePedalPosition 

The following task for the algorithm was to search for the signals from the expected 

response in the test script in the output. The graphs in figure 14 shows the signals 

belonging to the expected response in the output data. The algorithm searched for signals 

having values corresponding to the brake light being switched on. These values were 

illustrated in table 14 earlier. 

      

  

                                                           
18 Screenshots from the python shell have been converted to text format. Actual screenshot from test 
case 1 is found appendix F. 
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                  BrakePedalPosition               BrakeLigthRequest                          EBSBrakeSwitch 

 

        StopLightTruck  StoplightTrailer 

 

Figure 14. CAN and I/O signals from expected response with timestamp on the x-axis and 

value on the y-axis (values on x and y-axis has been removed due to employers request) 

The result in illustration 2 shows all signals from the expected response in the test script 

that are present in the output with the correct value. 

Illustration 2:  Result of matches between signals in test script database and output 

data 

Signals found in output 

StopLightTrailer[0|1]/Conversion/Out1 

EBSBrakeSwitch 

BrakePedalPosition 

StopLightTruck[0|1]/Conversion/Out1 

BrakeLightRequest 

A summary of number of matched signals in test script database and output data was 

presented to the user. In this case the numbers differs as a consequence of the logging 

error mentioned in the footnote 17 at page 40. 
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Illustration 3: Summary of number of matched signals  

Number of expected response signals in script database: 6 

Number of expected response signals in output database: 5 

After the algorithm had determined existing matches between expected response in the 

script database and the output the task was to determine if the signals in the expected 

response had occurred within an accepted time frame and start the stimulus search. Since 

some signals were sampled at even timestamps and others at odd timestamps it was 

necessary to search for two sequential timestamps containing all expected response 

signals. The crucial step was to return the time at which the stimulus search should begin.   

Ilustration 4: Stimulus search starts at the first timestamp where a full match of 

expected response signals is found in the output data 

Stimulus search should start at time <= 3.811 

The stimulus search which started at 3.811 resulted in that the stimulus was found. The 

stimulus is illustrated in figure 15. The value searched after was the brake pedal being 

equal to 80. 

     

     PositionBrakePedal 

 

Figure 15. Stimulus from test script A which corresponds to the brake pedal being 

pressed. The stimulus triggered expected response signals shown in figure 14 which 

corresponds to the brake light being turned on (values on x and y-axis have been removed 

due to employers request)   

The stimulus name, value and the timestamp where it was found were returned as shown 

in illustration 5. 

Illustration 5: Name, value and time for found stimulus returned 

Pos_BrakePedal[%]/Value, 80, 3.809 
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Finally a state search was performed, assuring that a valid state was present at the time of 

the expected response. Reporting if valid state signals were present or not.  

Illustration 6: Returning if valid state is present or not 

State signals found 

The three signals representing the state idling are illustrated in figure 16. The state idling 

corresponded to ParkingBrake = 1, EngineSpeed < 1000 and VehicleRef = 0. 

      ParkingBrake               EngineSpeed    VehicleRef 

 

Figure 16. Signals representing the parking brake, vehicle ref (m/s) and engine speed 

(r/pm) from the state idling. Values of the signals should be equal19 to values fetched from 

the test script database (values on x and y-axis have been removed due to employers 

request) 

5.4.2. Second test case: No matches 

In this test case, the algorithm searched for matches in output data from test script B. 

Ideally, the algorithm does not find any expected response in the output from test script 

B since finding an expected response from test script A in the output generated by test 

script B indicates a possible error. Running the algorithm gave the following result: 

Illustration 7: Signals belonging to expected response included in test script 

database 

Which script to run against output?: Test script A 

Signals included in script Test script A 

V.StopLampIntended 

StopLightTruck[0|1]/Conversion/Out1 

StopLightTrailer[0|1]/Conversion/Out1 

                                                           
19 The engine speed should be < 1000 
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BrakeLightRequest 

EBSBrakeSwitch 

BrakePedalPosition 

The difference from the first test case is that the search for expected response signals in 

the output data does not return any matches. Expected response signals are shown in 

figure 17, all having their values equal to zero. 

                       BrakePedalPosition                BrakeLightRequest                           EBSBrakeSwitch 

 

       StopLightTruck   StopLightTrailer 

 

Figure 17. Expected response signals from test script A in the output from test script B. 

As the brake pedal never being pressed in test script B, all expected response signals are 

equal to zero (values on x and y-axis have been removed due to employers request) 

The algorithm aborted the search without proceeding with the stimulus search. 

Illustration 8: Search for matches in output where no match is found 

Signals found in output 

No match found 

5.4.3 Third test case: Fault injection  
In this case a full expected response was planted20 in output data. The purpose was to 

illustrate the algorithm’s capability of finding this type of deviations. All six signals of 

                                                           
20 Fake values were inserted in the interval (3,3.003) 
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the expected response were given values corresponding to the brake pedal being pressed. 

As illustrated in figure 18, all signals change values briefly at time=3.  

                    BrakePedalPosition               BrakeLightRequest                         EBSBrakeSwitch 

 

 
       StopLightTruck                 StopLightTrailer                         StopLampIntended 

 

Figure 18: Fault injection of expected response signals (values on x and y-axis have been 

removed due to employers request) 

Results from running the algorithm are illustrated below. The algorithm identified the six 

signals and started searching for stimulus at time=3. As the correct stimulus associated 

with the expected response was not present no stimulus was found.  

Illustration 9: Full match of expected response found but no stimulus 

Signals found in output 

StopLightTrailer[0|1]/Conversion/Out1 

EBSBrakeSwitch 

V.StopLampIntended 

BrakePedalPosition 

StopLightTruck[0|1]/Conversion/Out1 

BrakeLightRequest 

Number of expected response signals in script database: 6 
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Number of expected response signals in output database: 6 

Stimulus search should start at time <= 3.0 

No stimulus found 

This result, when a match is found without a valid stimulus illustrates the type of findings 

the method is capable of identifying that are of most interest. It also illustrates the main 

weakness of the method, that is, how to correctly classify if this finding is an error or not. 

This is discussed more thoroughly in the result discussion. 

 

5.5 Evaluation of implemented algorithm with respect to 
requirements   

The implemented algorithm succeeded to fetch expected response signals from the test 

script database and to search for the signals having the expected values in the output data. 

The algorithm succeeded to determine that an entire expected response was found by 

counting the distinct number of signal names. When finding an expected response it 

succeeded to continue the search by fetching a valid stimulus from the test script database. 

The implementation was however not developed to manage fetching valid stimuli from 

other test scripts than the one from which it had fetched the expected response. After 

having fetched the valid stimulus from the test script database it managed to search for 

and find the stimulus in the output data at timestamps preceding the timestamp where the 

expected response was found. Thereafter it succeeded to fetch a valid state from the test 

script database and to search for the state signals in the output data. The search was 

performed at the same timestamps where the expected response signals were found.  

The algorithm failed to meet the requirement which states that it must be able to decide 

whether an expected response is the response to a stimulus or just the default value of the 

signal. This was a problem that was encountered during the prototyping and that came to 

be called the Default Problem. The Default Problem concerned tests which were testing 

the component's ability to reset after pervious tests. The expected response of such a test 

was that the signals would reset to the values which they had before the preceding test. 

As an example, after having tested that the brake lights are on when pressing the brake 

pedal a following test could be to control that the brake lights are turned off again after 

the brake pedal has been released. Since the brake lights are normally turned off the 

expected response which represents turned off brake lights will be found almost at every 

timestamp in every output data file. The valid stimulus, which is the brake pedal release, 

will in most cases not be found since nothing has triggered the brake lights to turn off, 

they are turned off by default. It will therefore be a problem to sort out expected responses 

which possibly should have required a valid stimulus.  

The algorithm was developed to let the user type in the name of the test script and the act 

number of which the test was going to be run upon the output data. An output database 

file was specified already in the code and was thus hardcoded. If a new algorithm were 

to be implemented in a future project choosing test script and output database file should 

be automated. The automated choices should be guided by FPC conditions of the test 

scripts and the output data.    
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  Table 17. Summary of requirements fulfilled by the implemented algorithm.   
  

Requirements for search and matching algorithm Implemented 

Looping  

Algorithm should be able to perform all tests which are valid 

for  FPC conditions of the output  

 

Expected response   

Algorithm must be able to get an expected response belonging to  a 

specific script from the test script database and look for matches in 

the output data     

 

Algorithm must be able to decide whether expected responses from 

a match have occurred within an accepted time frame    
Algorithm must be able to decide whether an expected response is 

the response of a stimulus or just the default value of the signal   

 

Stimulus   

Algorithm must be able to fetch every stimulus which is a valid 

trigger of a given expected response and search for them in the 

output data  

 

Algorithm must be able to determine that a stimulus occurred before 

an expected response according to a predefined time constraint    
If an expected response is present in the output data but no stimulus 

is found, algorithm must be able to announce finding of possible 

error   

 

State  

Algorithm must be able search and determine whether a state, which 

makes the stimulus a valid trigger of the expected response, is 

present in output data   

 

Algorithm must be able to announce if finding that state is not 

compatible with stimulus and/or expected response    
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6. Results discussion 
The aim of this thesis was to investigate the possibility to extend the use of output data 

by examining a new test method. During this thesis project possible designs of the test 

script database have been evaluated and an algorithm has been developed. The results 

show the database test method to be feasible in small scale for some test scripts. Tests 

were performed showing that the algorithm was capable of handling the most common 

scenarios. The results also indicate considerable weaknesses with the method’s current 

setup.  

Choosing any of the considered relational test script database designs meant accepting 

some undesirable design properties such as storing large amount of null values or storing 

redundant data. These properties were inevitable since the information in the test scripts 

was highly heterogeneous. The test scripts shared a common structure containing data 

which could be labelled as states, stimuli or expected responses. The common structure 

of the test script data made it possible for it to be stored in relational tables but with the 

amount and type of signals differing the data did not fit perfectly. Still, the features of 

SQL resulted in the relational model being considered more suitable for storing the test 

scripts than the document-oriented model. The implemented relational database was 

designed to simplify necessary queries and as a result it did not contain all data which is 

probably important for a full implementation of the database test method.  

Data that the implemented database did not contain was information about execution time 

and dependence between acts. To store information about the dependence between acts 

could contribute to solving the default problem. An example that has been used previously 

in this thesis paper to describe dependence between acts is the example with brake lights 

which are turned off after being turned on. What the database test method is intended to 

control is whether the brake lights ever go out, when supposed to be turned on, without 

being triggered to go out by a valid stimulus such as a brake pedal release. The default 

problem occurs when searching for the expected response representing the brake lights 

being turned off. Since the brake lights being turned off is the normal condition this search 

results in many matches in the output data. A possible way to solve this problem would 

be to first control if the brake lights are ever turned on and then if they are, start controlling 

if the lights ever go out without a valid stimulus triggering them to do so. That is, when 

act 2 is dependent on act 1, the search for the expected response of act 2 is performed 

starting at the timestamps where the expected response of act 1 is found.  

The information about execution time was considered to be important for the database 

test method if the database test method was used to replace the applied Scania test method 

but not when used as a complement to it. The execution time expressed the maximum 

time for an expected response to occur after a stimulus. The applied Scania test method 

controls that a stimulus triggers its expected response and that it triggers it within a given 

timeframe. Instead, the database test method controls if all expected responses found in 

output data have been preceded by valid stimuli. When a valid stimulus is found, the test 

has been passed. As the only way for a stimulus to occur in the output data is by it being 

set in a test script, it is assured that the time control has already been performed in the test 

script. Thus, if the database test method would also control the time in between a stimulus 

and its expected response the same control would be conducted twice as it is already 

conducted in the test scripts.   

Results from testing the algorithm showed that the type of tests the method was supposed 

to perform could be implemented. The implementation relied on database joins to perform 
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the matching part of the tests which had many advantages, no external code was needed 

to search for matching signals in the output database file with signals from the test script 

database. The cases that were tested only included joins where == or >= checks were 

performed. Expected responses in the test scripts can be of other types, such as <=, != or 

intervals which makes the query construction much more problematic. Queries that are 

general enough to be applicable to all test scripts and at the same time include all different 

possible checks is an unsolved problem.  

A weakness of the method is however that the test scripts do not contain sufficient 

information to determine that an expected response has been faulty triggered. Although 

this was outside the delimitations of the thesis problem it should be considered. If an 

expected response is found in an output database file without being preceded by a valid 

stimulus, as shown in the last test case in the algorithm result section, the database test 

method cannot guarantee to have found an error. Let us call this outcome A. Whenever 

A occurs, that is where the algorithm does not find any valid stimulus, A can be of type 

1 or type 2. Either it has found a true positive (type 1), which is a real error, or it is a false 

positive (type 2), nothing is wrong but information is not available to draw that 

conclusion. Determining whether A is type 1 or type 2 is not covered by the method today. 

By characterising type 2 findings based on its origin, the method can gradually be 

improved as new findings are discovered. Currently, type 2 findings can be characterised 

as either being caused by: 

1. Insufficient amount of information present in the test scripts 

2. The simulation framework (e.g. time delays in a simulation) 

3. Unknown source  

Since the origin of problem 1 is that an insufficient amount of data can be extracted from 

the test scripts the method could be improved by the insertion of absent data into the 

database as absent data is discovered, the same approach can be used for problem 2. 

Problem 3 covers all other sources that are currently unknown. Adding new sources to 

the list as they are discovered and thereby minimise the uncertainty caused by unknown 

sources, would lead to a gradual improvement of the methods accuracy. 

The technical solution of the algorithm required both SQL queries and flow control 

(mainly IF statements and FOR loops). As described in the thesis the implementation was 

done entirely in Python. A lot of information was sent back and forth between the 

database and the algorithm. One alternative that would reduce the amount of information 

being sent back and forth is stored procedures that were briefly discussed in the report. 

Due to time constraints it was no possible to evaluate this option more closely but stored 

procedures would enable to move some of the flow control to be performed inside the 

database.  

The algorithm was developed under the assumption that an expected response was only 

interesting if all signals belonging to the expected response was found. The assumption 

was based on how the expected responses were defined in the test scripts, that is, as a set 

of signals. This assumption has been questioned due to the findings made when 

performing the test case reported in the appendix, where three out of six signals were 

found. Finding a partial match for an expected response should probably be considered 

as interesting as a full match. Assuming that a potential error necessarily has to effect the 
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same set of signals as they are defined in the test scripts could actually be a limitation of 

the method.  
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7. Conclusions 
This thesis project has shown the database test method to be feasible for some test scripts. 

Whether this method is feasible for all test scripts need to be further investigated. In the 

event of a future investigation there are some weaknesses with the method that need to be 

taken into account. The test scripts were not written in a way that makes them easily 

stored in a database and they do not contain all necessary data for the algorithm to 

determine if an error has been discovered. To improve the method, it is necessary to 

characterize the different type of sources that provokes a false positive finding and 

incorporate that information in to the database as new sources are discovered. It is 

therefore recommended that future implementations of this method keeps track of 

different types of false error sources. At the current moment, two of these sources have 

been identified and discussed in the result discussion, it is reasonable to assume that even 

more will be discovered in the future. A problem that has not been investigated during 

this thesis project concerns how to extract data from the test scripts automatically which 

probably would be necessary as the manual extraction is a time consuming work. It might 

also be interesting to investigate if the necessary data can be extracted from another 

source as a complement to the test scripts, one such source could be SESAMM tool.  
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Appendix 

A. Illustration of a test script 

The example below illustrates a test script with two acts. The script test that the stop light 

lamp is functioning correctly. The script starts with setting the simulated vehicle in a 

desired state, assuring that the tests can be performed. In act 1 and 2, a stimulus is set and 

expected response signals are checked. The post act sets the vehicle in a new state, 

“cleaning up”, the simulation thus assuring that following test script can be executed 

without disturbance from the previous one.  

Pre : state (parked) 

Act 1: Stimulus: Press brake pedal  # Stop light lamp should be on 

Expected response: 

AssertEqual: BrakeLightRequest = 1  # CAN signal 

AssertEqual: StopLightIntended = 1  # CAN signal 

AssertEqual: EBSBrakeswitch = 1  # CAN signal 

AssertEqual: StopLightTruck = 1  # I/O signal 

Act 2: Stimulus: Release brake pedal # Stop light lamp should be off 

Expected response: 

AssertEqual: BrakeLightRequest = 0  # CAN signal 

AssertEqual: StopLightIntended = 0  # CAN signal 

AssertEqual: EBSBrakeswitch = 0  # CAN signal 

AssertEqual: StopLightTruck = 0  # I/O signal 

Post: state (idling) 
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B. Extended logging description  

Test script A tests that at certain set of signals, signal 1, signal 2, signal 3 and signal 4 

behaves correctly. The signals that are logged in the output database file are those 4 

signals. 

 

Execution of the script: The brake pedal is pressed to check that the brake lights behaves 

correctly. 

Expected response: Check that signal 1,2, 3 ,4 are correct.  

 

A second test script, test script B, tests that a set of other signals, signals 5, signal 6, signal 

7 and signal 8 behaves correctly. The signals that are logged in this output file are 5,6,7 

and 8. 

 

Execution of the script: The clutch pedal is pushed, gear is put in reverse to check that the 

reverse light is behaving correctly. 

Expected response: Check that signal 5,6,7,8 are correct. 

The new test method has been performed by logging signal 5,6,7,8 in the execution of 

test script A. The algorithm has then fetched the correct values from test script B which 

have been saved in a database and checked whether these values occur in the execution 

of test script A. If the values are found a manual search have to be performed in order to 

determine whether an error has occurred or not.  
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C. Extended flowchart for algorithm 

The flowchart in the figure describes necessary steps of the algorithm for it to meet all of 

the requirements.  
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D. MongoDB database 

JSON file containing one test script. The file was used for creating the Mongo database. 

{ 

  "Script": "TCO0012", 

  "FPC": [ 

    "FPC1A", 

    "FPC1B" 

  ], 

  "PRE": { 

    "Idling": { 

      "Vech-Ref": 1, 

      "Parkingbrake": 2, 

      "SCANIAClutch": 1, 

      "Steer_Mode_SCANIA": 1, 

      "SelectorLever_Mode": 1, 

      "Pos_BrakePedal": 0, 

      "Pos_AccPedal": 0, 

      "Pos_ClutchPedal": 0, 

      "Angle_SteeringWheel": 0, 

      "KeyPosition": 2, 

      "v_Vehicle_Ref": 0 

    }, 

    "Stim": { 

      "Set brakepedal": { 

        "Pos_Brakepedal": 50 

      }, 

      "Release breakpedal": { 

        "Pos_Brakepedal": 0 

      } 

    }, 

    "Wait": 4 

  }, 

  "ACTS": { 

    "ACT1": { 

      "STIM": { 

        "Press brake pedal, stop light lamp should be ON": { 

          "Pos_Brakepedal": 80 

        } 

      }, 

      "Expected": { 

        "can_Red_EBC1_A_BrakePedalPosition": 50, 

        "can_Yellow_CUVInformation_V_StopLampIntended": 1, 

        "can_Yellow_CooGeneralInfo_K_BrakeLightRequest": 2, 

        "can_Red_EBC1_A_EBSBrakeSwitch": 1, 

        

"scaling_from_hardware_ScalingFromHardware_CUV2_StopLightTruck": 1, 

        

"scaling_from_hardware_ScalingFromHardware_CUV2_StopLightTrailer": 1 

      }, 

      "Wait": 2 

    }, 

    "ACT2": { 

      "Stim": { 

        "Release brake pedal": { 

          "asm_mdl_env_MDL_PAR_ManualControl_Pos_BrakePedal": 0 

        } 

      }, 

      "Expected": { 

        "can_Red_EBC1_A_BrakePedalPosition:": 0, 
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        "can_Yellow_CUVInformation_V_StopLampIntended": 0, 

        "can_Yellow_CooGeneralInfo_K_BrakeLightRequest": 0, 

        "can_Red_EBC1_A_EBSBrakeSwitch": 0, 

        

"scaling_from_hardware_ScalingFromHardware_CUV2_StopLightTruck": 0, 

        

"scaling_from_hardware_ScalingFromHardware_CUV2_StopLightTrailer": 1 

      }, 

      "Requires": "Act1", 

      "Wait": 2 

    } 

  }, 

  "POST": { 

    "Parked": { 

      "Vech-Ref": 1, 

      "Parkingbrake": 2, 

      "SCANIAClutch": 1, 

      "Steer_Mode_SCANIA": 1, 

      "SelectorLever_Mode": 1, 

      "Pos_BrakePedal": 0, 

      "Pos_AccPedal": 0, 

      "Pos_ClutchPedal": 0, 

      "Angle_SteeringWheel": 0, 

      "KeyPosition": 2, 

      "v_Vehicle_Ref": 0 

    } 

  } 

} 

 

Screenshot from the MongoDB database illustrating the structure of a stored test script.  

Acts, FPC,Post and Pre are main documents containing embedded documents which in turn 

contain more embedded documents. 
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E. Output database file 

Example of an output database file with attributes SignalName, TimeStamp and Value (Signal 
names has been removed due to employers request).  
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F. Screenshots from execution of algorithm 

Screenshot from test case 1 when running the algorithm. 
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G. Finding partial expected response without valid stimulus 

In one of the output files generated by test script B the algorithm found three out of six 

expected response signals belonging to test script A. The signals found corresponds to the 

brake pedal being pressed, the brake pedal is however never pressed in test script B. The 

finding could be an error, there are however many uncertainties that need to be resolved 

to be able to classify the finding as an error or not. 

 

Figure: Stimulus brake pedal, as shown in the graph the brake pedal is never pressed and 
has a constant value of 0 values on x and y-axis has been removed due to employers 

request)  
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Figure: Stimulus clutch pedal activated and released which is the stimulus of test script 

B (values on x and y-axis has been removed due to employers request) 

 

Figure 22. Expected response signals from test script A active in output from test script 

B (values on x and y-axis has been removed due to employers request) 
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H. Individual contributions  

The formulation of this thesis report, as well as the work load during the thesis project, 

was equally divided between the two authors. The report was mainly written using web-

based tools as Google Docs and Microsoft OneDrive which made it possible for the 

authors to write on the report simultaneously and to continuously proofread each other’s 

text. All parts of the report have been read and rewritten by both authors. This section is 

meant to give an indication of who was responsible of writing the main part of the original 

text in the different chapters of the report.  

Abstract: Therése Svensson 

Introduction: Both authors wrote equally much of the original text. 

Theory: Saman Akbarian  

Method, methodology and tools: Therése Svensson 

Database design: Therése Svensson 

Algorithm design and development: Saman Akbarian  

Results discussion: Both authors wrote equally much of the original text. 

Conclusions:  Both authors wrote equally much of the original text. 

 


